円の性質は「円周角の定理」が重要
円の性質で最も重要なのは、円周角の定理です。 円周角の定理をを理解するために、最初に「円周角」と「中心角」の意味をしっかりと覚える必要があります。円周角とは
円周角とは、ユークリッド幾何学においてある円周上の一点から、この点を含まない円周上の異なる二点へそれぞれ線分を引くとき、その二つの線分のなす角のことです。 しかし、これでは理解できない人が大半でしょう。 噛み砕いて説明すると、「円周上の1点」と、それ以外の円周上からとった2つの点を、線分でむすんだときにできる角度のことを、円周角と読んでいます。 たとえば、円Oがあったとします。 円周上の点をA・B・Pとした場合、∠APBを弧ABに対する円周角といいます。中心角とは
中心角とは、弧の両端を通る2つの半径の作る角です。 たとえば、下の円Oだったら、∠AOBが弧ABに対する「中心角」となります。円周角の定理を解説
円周角と中心角がわかったところで、円周角の定理の説明をしていきます。 円周角の定理とは円周角と中心角について成り立つもので、以下の2点の性質があります。- 1つの弧に対する円周角の大きさは一定で等しい
- 1つの弧に対する円周角の大きさは,中心角の半分になる
1つの弧に対する円周角の大きさは一定で等しい
これは、円周角の性質を表しています。 同じ弧の円周角ならすべて等しいということですが、しっかり同じ弧であることに注意しましょう。1つの弧に対する円周角の大きさは,中心角の半分になる
これは、円周角と中心角の性質を表しています。 たとえば、このとき、円周角APBは中心角AOBの半分になります。 式であらわすと以下の通りです。角APB = ½ 角AOB
これが、円周角の定理のうち、同じ弧に対する円周角と中心角の関係で、もし、円周角APBが「50°」だとしたら、中心角AOBは「100°」になります。